Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Tuberculosis (Edinb) ; 146: 102494, 2024 May.
Article in English | MEDLINE | ID: mdl-38367368

ABSTRACT

Human tuberculosis (TB) is caused by various members of the Mycobacterium tuberculosis (Mtb) complex. Differences in host response to infection have been reported, illustrative of a need to evaluate efficacy of novel vaccine candidates against multiple strains in preclinical studies. We previously showed that the murine lung and spleen direct mycobacterial growth inhibition assay (MGIA) can be used to assess control of ex vivo mycobacterial growth by host cells. The number of mice required for the assay is significantly lower than in vivo studies, facilitating testing of multiple strains and/or the incorporation of other cellular analyses. Here, we provide proof-of-concept that the murine MGIA can be applied to evaluate vaccine-induced protection against multiple Mtb clinical isolates. Using an ancient and modern strain of the Mtb complex, we demonstrate that ex vivo bacillus Calmette-Guérin (BCG)-mediated mycobacterial growth inhibition recapitulates protection observed in the lung and spleen following in vivo infection of mice. Further, we provide the first report of cellular and transcriptional correlates of BCG-induced growth inhibition in the lung MGIA. The ex vivo MGIA represents a promising platform to gain early insight into vaccine performance against a collection of Mtb strains and improve preclinical evaluation of TB vaccine candidates.


Subject(s)
Mycobacterium bovis , Mycobacterium tuberculosis , Tuberculosis Vaccines , Tuberculosis , Mice , Humans , Animals , BCG Vaccine , High-Throughput Screening Assays , Tuberculosis/microbiology
2.
RSC Med Chem ; 13(11): 1350-1360, 2022 Nov 16.
Article in English | MEDLINE | ID: mdl-36426236

ABSTRACT

A series of imidazole and triazole diarylpyrazole derivatives were prepared using an efficient 5-step synthetic scheme and evaluated for binding affinity with Mycobacterium tuberculosis (Mtb) CYP121A1 and antimycobacterial activity against Mtb H37Rv. Antimycobacterial susceptibility was measured using the spot-culture growth inhibition assay (SPOTi): the imidazoles displayed minimum inhibitory concentration (MIC90) in the range of 3.95-12.03 µg mL-1 (10.07-33.19 µM) with 11f the most active, while the triazoles displayed MIC90 in the range of 4.35-25.63 µg mL-1 (11.88-70.53 µM) with 12b the most active. Assessment of binding affinity using UV-vis spectroscopy showed that for the imidazole series, the propyloxy (11f) and isopropyloxy (11h) derivatives of the 4-chloroaryl pyrazoles displayed Mtb CYP121A1 type II binding affinity with K d 11.73 and 17.72 µM respectively compared with the natural substrate cYY (K d 12.28 µM), while in the triazole series, only the methoxy substitution with the 4-chloroaryl pyrazole (12b) showed good type II Mtb CYP121A1 binding affinity (K d 5.13 µM). Protein-detected 1D 19F-NMR spectroscopy as an orthogonal strategy was used to evaluate ligand binding independent of perturbations at the haem. For imidazole and triazole compounds, perturbations were more intense than cYY indicating tighter binding and confirming that ligand coordination occurs in the substrate-binding pocket despite very modest changes in UV-vis absorbance, consistent with computational studies and the demonstrated potential anti-tuberculosis properties of these compounds.

3.
Front Immunol ; 13: 853690, 2022.
Article in English | MEDLINE | ID: mdl-35812377

ABSTRACT

The complement system is required for innate immunity against Acinetobacter baumannii, an important cause of antibiotic resistant systemic infections. A. baumannii strains differ in their susceptibility to the membrane attack complex (MAC) formed from terminal complement pathway proteins, but the reasons for this variation remain poorly understood. We have characterized in detail the complement sensitivity phenotypes of nine A. baumannii clinical strains and some of the factors that might influence differences between strains. Using A. baumannii laboratory strains and flow cytometry assays, we first reconfirmed that both opsonization with the complement proteins C3b/iC3b and MAC formation were inhibited by the capsule. There were marked differences in C3b/iC3b and MAC binding between the nine clinical A. baumannii strains, but this variation was partially independent of capsule composition or size. Opsonization with C3b/iC3b improved neutrophil phagocytosis of most strains. Importantly, although C3b/iC3b binding and MAC formation on the bacterial surface correlated closely, MAC formation did not correlate with variations between A. baumannii strains in their levels of serum resistance. Genomic analysis identified only limited differences between strains in the distribution of genes required for serum resistance, but RNAseq data identified three complement-resistance genes that were differentially regulated between a MAC resistant and two MAC intermediate resistant strains when cultured in serum. These data demonstrate that clinical A. baumannii strains vary in their sensitivity to different aspects of the complement system, and that the serum resistance phenotype was influenced by factors in addition to the amount of MAC forming on the bacterial surface.


Subject(s)
Acinetobacter baumannii , Acinetobacter baumannii/genetics , Complement Activation , Complement C3b/metabolism , Complement Membrane Attack Complex , Complement System Proteins , Phagocytosis
4.
mBio ; 13(4): e0067222, 2022 08 30.
Article in English | MEDLINE | ID: mdl-35862770

ABSTRACT

Tuberculosis has severe impacts on both humans and animals. Understanding the genetic basis of survival of both Mycobacterium tuberculosis, the human-adapted species, and Mycobacterium bovis, the animal-adapted species, is crucial to deciphering the biology of both pathogens. There are several studies that identify the genes required for survival of M. tuberculosis in vivo using mouse models; however, there are currently no studies probing the genetic basis of survival of M. bovis in vivo. In this study, we utilize transposon insertion sequencing in M. bovis AF2122/97 to determine the genes required for survival in cattle. We identify genes encoding established mycobacterial virulence functions such as the ESX-1 secretion system, phthiocerol dimycocerosate (PDIM) synthesis, mycobactin synthesis, and cholesterol catabolism that are required in vivo. We show that, as in M. tuberculosis H37Rv, phoPR is required by M. bovis AF2122/97 in vivo despite the known defect in signaling through this system. Comparison to studies performed in species that are able to use carbohydrates as an energy source, such as M. bovis BCG and M. tuberculosis, suggests that there are differences in the requirement for genes involved in cholesterol import (mce4 operon) and oxidation (hsd). We report a good correlation with existing mycobacterial virulence functions but also find several novel virulence factors, including genes involved in protein mannosylation, aspartate metabolism, and glycerol-phosphate metabolism. These findings further extend our knowledge of the genetic basis of survival in vivo in bacteria that cause tuberculosis and provide insight for the development of novel diagnostics and therapeutics. IMPORTANCE This is the first report of the genetic requirements of an animal-adapted member of the Mycobacterium tuberculosis complex (MTBC) in a natural host. M. bovis has devastating impacts on cattle, and bovine tuberculosis is a considerable economic, animal welfare, and public health concern. The data highlight the importance of mycobacterial cholesterol catabolism and identify several new virulence factors. Additionally, the work informs the development of novel differential diagnostics and therapeutics for TB in both human and animal populations.


Subject(s)
Mycobacterium bovis , Mycobacterium tuberculosis , Tuberculosis, Bovine , Tuberculosis , Animals , Cattle , Cholesterol/metabolism , Humans , Mice , Mycobacterium bovis/genetics , Mycobacterium tuberculosis/genetics , Tuberculosis, Bovine/genetics , Tuberculosis, Bovine/microbiology , Virulence Factors/genetics , Virulence Factors/metabolism
5.
Microb Cell Fact ; 21(1): 66, 2022 Apr 21.
Article in English | MEDLINE | ID: mdl-35449016

ABSTRACT

BACKGROUND: Glycoengineering, in the biotechnology workhorse bacterium, Escherichia coli, is a rapidly evolving field, particularly for the production of glycoconjugate vaccine candidates (bioconjugation). Efficient production of glycoconjugates requires the coordinated expression within the bacterial cell of three components: a carrier protein, a glycan antigen and a coupling enzyme, in a timely fashion. Thus, the choice of a suitable E. coli host cell is of paramount importance. Microbial chassis engineering has long been used to improve yields of chemicals and biopolymers, but its application to vaccine production is sparse. RESULTS: In this study we have engineered a family of 11 E. coli strains by the removal and/or addition of components rationally selected for enhanced expression of Streptococcus pneumoniae capsular polysaccharides with the scope of increasing yield of pneumococcal conjugate vaccines. Importantly, all strains express a detoxified version of endotoxin, a concerning contaminant of therapeutics produced in bacterial cells. The genomic background of each strain was altered using CRISPR in an iterative fashion to generate strains without antibiotic markers or scar sequences. CONCLUSIONS: Amongst the 11 modified strains generated in this study, E. coli Falcon, Peregrine and Sparrowhawk all showed increased production of S. pneumoniae serotype 4 capsule. Eagle (a strain without enterobacterial common antigen, containing a GalNAc epimerase and PglB expressed from the chromosome) and Sparrowhawk (a strain without enterobacterial common antigen, O-antigen ligase and chain length determinant, containing a GalNAc epimerase and chain length regulators from Streptococcus pneumoniae) respectively produced an AcrA-SP4 conjugate with 4 × and 14 × more glycan than that produced in the base strain, W3110. Beyond their application to the production of pneumococcal vaccine candidates, the bank of 11 new strains will be an invaluable resource for the glycoengineering community.


Subject(s)
Escherichia coli , Glycoconjugates , Bacterial Vaccines/genetics , Escherichia coli/metabolism , Glycoconjugates/metabolism , Polysaccharides/metabolism , Polysaccharides, Bacterial/metabolism , Racemases and Epimerases/metabolism , Streptococcus pneumoniae/genetics , Streptococcus pneumoniae/metabolism , Vaccines, Conjugate
6.
Front Immunol ; 12: 705533, 2021.
Article in English | MEDLINE | ID: mdl-34394105

ABSTRACT

Antibody therapy may be an alternative treatment option for infections caused by the multi-drug resistant (MDR) bacterium Acinetobacter baumannii. As A. baumannii has multiple capsular serotypes, a universal antibody therapy would need to target conserved protein antigens rather than the capsular polysaccharides. We have immunized mice with single or multiple A. baumannii strains to induce antibody responses to protein antigens, and then assessed whether these responses provide cross-protection against a collection of genetically diverse clinical A. baumannii isolates. Immunized mice developed antibody responses to multiple protein antigens. Flow cytometry IgG binding assays and immunoblots demonstrated improved recognition of both homologous and heterologous clinical strains in sera from mice immunized with multiple strains compared to a single strain. The capsule partially inhibited bacterial recognition by IgG and the promotion of phagocytosis by human neutrophils. However, after immunization with multiple strains, serum antibodies to protein antigens promoted neutrophil phagocytosis of heterologous A. baumannii strains. In an infection model, mice immunized with multiple strains had lower bacterial counts in the spleen and liver following challenge with a heterologous strain. These data demonstrate that antibodies targeting protein antigens can improve immune recognition and protection against diverse A. baumannii strains, providing support for their use as an antibody therapy.


Subject(s)
Acinetobacter baumannii/immunology , Antibodies, Bacterial/immunology , Antibody Formation , Bacterial Vaccines/immunology , Vaccination , Animals , Female , Humans , Mice
7.
Elife ; 102021 02 16.
Article in English | MEDLINE | ID: mdl-33588991

ABSTRACT

Before the coronavirus 2019 (COVID-19) pandemic began, antimicrobial resistance (AMR) was among the top priorities for global public health. Already a complex challenge, AMR now needs to be addressed in a changing healthcare landscape. Here, we analyse how changes due to COVID-19 in terms of antimicrobial usage, infection prevention, and health systems affect the emergence, transmission, and burden of AMR. Increased hand hygiene, decreased international travel, and decreased elective hospital procedures may reduce AMR pathogen selection and spread in the short term. However, the opposite effects may be seen if antibiotics are more widely used as standard healthcare pathways break down. Over 6 months into the COVID-19 pandemic, the dynamics of AMR remain uncertain. We call for the AMR community to keep a global perspective while designing finely tuned surveillance and research to continue to improve our preparedness and response to these intersecting public health challenges.


Subject(s)
Anti-Bacterial Agents , COVID-19 Drug Treatment , COVID-19 , Critical Pathways , Drug Resistance, Bacterial/physiology , Global Health/trends , Anti-Bacterial Agents/supply & distribution , Anti-Bacterial Agents/therapeutic use , COVID-19/epidemiology , COVID-19/prevention & control , Communicable Disease Control/methods , Communicable Disease Control/organization & administration , Critical Pathways/organization & administration , Critical Pathways/trends , Humans , SARS-CoV-2
8.
Front Immunol ; 12: 764390, 2021.
Article in English | MEDLINE | ID: mdl-35003078

ABSTRACT

Recent evidence suggests that several cattle breeds may be more resistant to infection with the zoonotic pathogen Mycobacterium bovis. Our data presented here suggests that the response to mycobacterial antigens varies in macrophages generated from Brown Swiss (BS) and Holstein Friesian (HF) cattle, two breeds belonging to the Bos taurus family. Whole genome sequencing of the Brown Swiss genome identified several potential candidate genes, in particular Toll-like Receptor-2 (TLR2), a pattern recognition receptor (PRR) that has previously been described to be involved in mycobacterial recognition. Further investigation revealed single nucleotide polymorphisms (SNP) in TLR2 that were identified between DNA isolated from cells of BS and HF cows. Interestingly, one specific SNP, H326Q, showed a different genotype frequency in two cattle subspecies, Bos (B.) taurus and Bos indicus. Cloning of the TLR2 gene and subsequent gene-reporter and chemokine assays revealed that this SNP, present in BS and Bos indicus breeds, resulted in a significantly higher response to mycobacterial antigens as well as tri-acylated lipopeptide ligands in general. Comparing wild-type and H326Q containing TLR2 responses, wild-type bovine TLR2 response showed clear, diminished mycobacterial antigen responses compared to human TLR2, however bovine TLR2 responses containing H326Q were found to be partially recovered compared to human TLR2. The creation of human:bovine TLR2 chimeras increased the response to mycobacterial antigens compared to the full-length bovine TLR2, but significantly reduced the response compared to the full-length human TLR2. Thus, our data, not only present evidence that TLR2 is a major PRR in the mammalian species-specific response to mycobacterial antigens, but furthermore, that there are clear differences between the response seen in different cattle breeds, which may contribute to their enhanced or reduced susceptibility to mycobacterial infection.


Subject(s)
Breeding , Immunity, Innate/immunology , Mycobacterium Infections/immunology , Polymorphism, Single Nucleotide/immunology , Toll-Like Receptor 2/immunology , Animals , Cattle , Immunity, Innate/genetics , Mycobacterium bovis/immunology , Mycobacterium tuberculosis/immunology , Polymorphism, Single Nucleotide/genetics , Toll-Like Receptor 2/genetics
9.
Front Vet Sci ; 8: 760717, 2021.
Article in English | MEDLINE | ID: mdl-35004921

ABSTRACT

Members of the Mycobacterium tuberculosis complex (MTBC) show distinct host adaptations, preferences and phenotypes despite being >99% identical at the nucleic acid level. Previous studies have explored gene expression changes between the members, however few studies have probed differences in gene essentiality. To better understand the functional impacts of the nucleic acid differences between Mycobacterium bovis and Mycobacterium tuberculosis, we used the Mycomar T7 phagemid delivery system to generate whole genome transposon libraries in laboratory strains of both species and compared the essentiality status of genes during growth under identical in vitro conditions. Libraries contained insertions in 54% of possible TA sites in M. bovis and 40% of those present in M. tuberculosis, achieving similar saturation levels to those previously reported for the MTBC. The distributions of essentiality across the functional categories were similar in both species. 527 genes were found to be essential in M. bovis whereas 477 genes were essential in M. tuberculosis and 370 essential genes were common in both species. CRISPRi was successfully utilised in both species to determine the impacts of silencing genes including wag31, a gene involved in peptidoglycan synthesis and Rv2182c/Mb2204c, a gene involved in glycerophospholipid metabolism. We observed species specific differences in the response to gene silencing, with the inhibition of expression of Mb2204c in M. bovis showing significantly less growth impact than silencing its orthologue (Rv2182c) in M. tuberculosis. Given that glycerophospholipid metabolism is a validated pathway for antimicrobials, our observations suggest that target vulnerability in the animal adapted lineages cannot be assumed to be the same as the human counterpart. This is of relevance for zoonotic tuberculosis as it implies that the development of antimicrobials targeting the human adapted lineage might not necessarily be effective against the animal adapted lineage. The generation of a transposon library and the first reported utilisation of CRISPRi in M. bovis will enable the use of these tools to further probe the genetic basis of survival under disease relevant conditions.

10.
Front Microbiol ; 11: 619427, 2020.
Article in English | MEDLINE | ID: mdl-33597931

ABSTRACT

A greater understanding of the genes involved in antibiotic resistance in Mycobacterium tuberculosis (Mtb) is necessary for the design of improved therapies. Clustered regularly interspaced short palindromic repeat interference (CRISPRi) has been previously utilized in mycobacteria to identify novel drug targets by the demonstration of gene essentiality. The work presented here shows that it can also be usefully applied to the study of non-essential genes involved in antibiotic resistance. The expression of an ADP-ribosyltransferase (Arr) involved in rifampicin resistance in Mycobacterium smegmatis was silenced using CRISPRi and the impact on rifampicin susceptibility was measured. Gene silencing resulted in a decrease in the minimum inhibitory concentration (MIC) similar to that previously reported in an arr deletion mutant. There is contradictory evidence for the toxicity of Streptococcus pyogenes dCas9 (dCas9Spy) in the literature. In this study the expression of dCas9Spy in M. smegmatis showed no impact on viability. Silencing was achieved with concentrations of the aTc inducer lower than previously described and with shorter induction times. Finally, designing small guide RNAs (sgRNAs) that target transcription initiation, or the early stages of elongation had the most impact on rifampicin susceptibility. This study demonstrates that CRISPRi based gene silencing can be as impactful as gene deletion for the study of non-essential genes and further contributes to the knowledge on the design and induction of sgRNAs for CRISPRi. This approach can be applied to other non-essential antimicrobial resistance genes such as drug efflux pumps.

11.
BMJ ; 366: l5364, 2019 09 06.
Article in English | MEDLINE | ID: mdl-31492658
12.
PLoS One ; 13(5): e0196202, 2018.
Article in English | MEDLINE | ID: mdl-29771915

ABSTRACT

Burkholderia pseudomallei, a gram-negative intracellular bacillus, is the causative agent of a tropical infectious disease called melioidosis. Bacterial ATP-binding cassette (ABC) transporters import and export a variety of molecules across bacterial cell membranes. At present, their significance in B. pseudomallei pathogenesis is poorly understood. We report here characterization of the BPSL1039-1040 ABC transporter. B. pseudomallei cultured in M9 medium supplemented with nitrate, demonstrated that BPSL1039-1040 is involved in nitrate transport for B. pseudomallei growth under anaerobic, but not aerobic conditions, suggesting that BPSL1039-1040 is functional under reduced oxygen tension. In addition, a nitrate reduction assay supported the function of BPSL1039-1040 as nitrate importer. A bpsl1039-1040 deficient mutant showed reduced biofilm formation as compared with the wild-type strain (P = 0.027) when cultured in LB medium supplemented with nitrate under anaerobic growth conditions. This reduction was not noticeable under aerobic conditions. This suggests that a gradient in oxygen levels could regulate the function of BPSL1039-1040 in B. pseudomallei nitrate metabolism. Furthermore, the B. pseudomallei bpsl1039-1040 mutant had a pronounced effect on plaque formation (P < 0.001), and was defective in intracellular survival in both non-phagocytic (HeLa) and phagocytic (J774A.1 macrophage) cells, suggesting reduced virulence in the mutant strain. The bpsl1039-1040 mutant was found to be attenuated in a BALB/c mouse intranasal infection model. Complementation of the bpsl1039-1040 deficient mutant with the plasmid-borne bpsl1039 gene could restore the phenotypes observed. We propose that the ability to acquire nitrate for survival under anaerobic conditions may, at least in part, be important for intracellular survival and has a contributory role in the pathogenesis of B. pseudomallei.


Subject(s)
ATP-Binding Cassette Transporters/metabolism , Bacterial Proteins/metabolism , Biofilms/growth & development , Burkholderia pseudomallei/physiology , Intracellular Space/microbiology , Macrophages/microbiology , Melioidosis/immunology , ATP-Binding Cassette Transporters/genetics , Anaerobiosis , Animals , Bacterial Proteins/genetics , Burkholderia pseudomallei/genetics , Burkholderia pseudomallei/metabolism , Burkholderia pseudomallei/pathogenicity , Cell Survival , Disease Models, Animal , Female , HeLa Cells , Humans , Macrophages/cytology , Mice , Mice, Inbred BALB C , Mutation , Nitrites/metabolism , Phenotype , Virulence
13.
PLoS One ; 12(4): e0174973, 2017.
Article in English | MEDLINE | ID: mdl-28384255

ABSTRACT

The causative agent of tuberculosis, Mycobacterium tuberculosis (M. tuberculosis), contains an abundant cell wall glycolipid and a crucial virulence factor, trehalose-6,6'-dimycolate (TDM). TDM causes delay of phagosome maturation and thus promotes survival of mycobacteria inside host macrophages by a not fully understood mechanism. TDM signals through the Monocyte-INducible C-type LEctin (Mincle), a recently identified pattern recognition receptor. Here we show that recruitment of Mincle by TDM coupled to immunoglobulin (Ig)G-opsonised beads during Fcγ receptor (FcγR)-mediated phagocytosis interferes with phagosome maturation. In addition, modulation of phagosome maturation by TDM requires SH2-domain-containing inositol polyphosphate 5' phosphatase (SHP-1) and the FcγRIIB, which strongly suggests inhibitory downstream signalling of Mincle during phagosome formation. Overall, our study reveals important mechanisms contributing to the virulence of TDM.


Subject(s)
Lectins, C-Type/metabolism , Membrane Proteins/metabolism , Phagosomes/drug effects , Protein Tyrosine Phosphatase, Non-Receptor Type 6/metabolism , Receptors, IgG/metabolism , Signal Transduction , Trehalose/pharmacology , Animals , Cell Line , Mice , Mice, Inbred C57BL , Mice, Knockout , Phagosomes/metabolism
14.
Drug Discov Today ; 22(6): 919-926, 2017 06.
Article in English | MEDLINE | ID: mdl-28212948

ABSTRACT

Glycosylation is one of the most prevalent post-translational modifications of a protein, with a defining impact on its structure and function. Many of the proteins involved in the innate or adaptive immune response, including cytokines, chemokines, and antimicrobial peptides (AMPs), are glycosylated, contributing to their myriad activities. The current availability of synthetic coupling and glycoengineering technology makes it possible to customise the most beneficial glycan modifications for improved AMP stability, microbicidal potency, pathogen specificity, tissue or cell targeting, and immunomodulation.


Subject(s)
Antimicrobial Cationic Peptides/metabolism , Animals , Antimicrobial Cationic Peptides/pharmacology , Glycosylation , Humans , Protein Processing, Post-Translational
15.
Article in English | MEDLINE | ID: mdl-27458573

ABSTRACT

Toll-like receptor (TLR)-1 and TLR2 have been shown to be receptors for Mycobacterium leprae (M. leprae), yet it is unclear whether M. leprae can signal through alternative TLRs. Other mycobacterial species possess ligands for TLR4 and genetic association studies in human populations suggest that people with TLR4 polymorphisms may be protected against leprosy. Using human embryonic kidney (HEK)-293 cells co-transfected with TLR4, we demonstrate that M. leprae activates TLR4. We used human macrophages to show that M. leprae stimulation of cytokine production is diminished if pre-treated with TLR4 neutralizing antibody. TLR4 protein expression was up-regulated on macrophages derived from non-bacillus Calmette-Guerin (BCG) vaccinated healthy volunteers after incubation with M. leprae, whereas it was down-regulated in macrophages derived from BCG-vaccinated donors. Finally, pre-treatment of macrophages derived from BCG-naive donors with BCG reversed the effect of M. leprae on TLR4 expression. This may be a newly described phenomenon by which BCG vaccination stimulates "non-specific" protection to the human immune system.


Subject(s)
BCG Vaccine/immunology , Macrophages/metabolism , Mycobacterium leprae/metabolism , Toll-Like Receptor 4/metabolism , Animals , Antibodies, Monoclonal , Antibodies, Neutralizing , BCG Vaccine/pharmacology , Cell Differentiation/immunology , Cytokines/metabolism , HEK293 Cells , Humans , Leprosy/immunology , Leprosy/microbiology , Macrophages/drug effects , Macrophages/immunology , Mice , Monocytes/drug effects , Monocytes/immunology , Mycobacterium leprae/immunology , Signal Transduction , Toll-Like Receptor 4/biosynthesis , Toll-Like Receptor 4/immunology
16.
Innate Immun ; 22(3): 181-5, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26939595

ABSTRACT

The role of macrophage-inducible C-type lectin (Mincle) in anti-inflammatory responses has not yet been fully characterized. Herein, we show that engagement of Mincle by trehalose-dimycolate or mycobacteria promotes IL-10 production in macrophages, which causes down-regulation of IL-12p40 secretion. Thus, Mincle mediates both pro- as well as anti-inflammatory responses.


Subject(s)
Lectins, C-Type/metabolism , Macrophages/immunology , Membrane Proteins/metabolism , Mycobacteriaceae/immunology , Mycobacterium bovis/immunology , Tuberculosis, Pulmonary/immunology , Animals , Cells, Cultured , Cord Factors/metabolism , Gene Expression Regulation , Humans , Immunity, Innate , Interleukin-10/genetics , Interleukin-10/metabolism , Interleukin-12 Subunit p40/genetics , Interleukin-12 Subunit p40/metabolism , Lectins, C-Type/genetics , Macrophages/microbiology , Membrane Proteins/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Toll-Like Receptor 2/genetics , Toll-Like Receptor 2/metabolism
17.
Curr Opin Microbiol ; 29: 94-103, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26803404

ABSTRACT

The Burkholderia genus contains a group of soil-dwelling Gram-negative organisms that are prevalent in warm and humid climates. Two species in particular are able to cause disease in animals, B. mallei primarily infects Equus spp. and B. pseudomallei (BPS), that is able to cause potentially life-threatening disease in humans. BPS is naturally resistant to many antibiotics and there is no vaccine available. Although not a specialised human pathogen, BPS possesses a large genome and many virulence traits that allow it to adapt and survive very successfully in the human host. Key to this survival is the ability of BPS to replicate intracellularly. In this review we highlight recent advances in our understanding of the intracellular survival of BPS, including how it overcomes host immune defenses and other challenges to establish its niche and then spread the infection. Knowledge of these mechanisms increases our capacity for therapeutic interventions against a well-armed foe.


Subject(s)
Burkholderia pseudomallei/growth & development , Burkholderia pseudomallei/immunology , Cytoplasm/microbiology , Host-Pathogen Interactions , Melioidosis/microbiology , Actins/metabolism , Animals , Burkholderia pseudomallei/genetics , Burkholderia pseudomallei/pathogenicity , DNA Replication , Giant Cells/microbiology , Humans , Melioidosis/therapy , Type VI Secretion Systems/metabolism , Virulence/genetics , Virulence Factors/genetics , Virulence Factors/physiology
18.
Infect Immun ; 84(3): 701-10, 2015 Dec 28.
Article in English | MEDLINE | ID: mdl-26712202

ABSTRACT

Burkholderia pseudomallei, the causative agent of melioidosis, has complex and poorly understood extracellular and intracellular lifestyles. We used transposon-directed insertion site sequencing (TraDIS) to retrospectively analyze a transposon library that had previously been screened through a BALB/c mouse model to identify genes important for growth and survival in vivo. This allowed us to identify the insertion sites and phenotypes of negatively selected mutants that were previously overlooked due to technical constraints. All 23 unique genes identified in the original screen were confirmed by TraDIS, and an additional 105 mutants with various degrees of attenuation in vivo were identified. Five of the newly identified genes were chosen for further characterization, and clean, unmarked bpsl2248, tex, rpiR, bpsl1728, and bpss1528 deletion mutants were constructed from the wild-type strain K96243. Each of these mutants was tested in vitro and in vivo to confirm their attenuated phenotypes and investigate the nature of the attenuation. Our results confirm that we have identified new genes important to in vivo virulence with roles in different stages of B. pseudomallei pathogenesis, including extracellular and intracellular survival. Of particular interest, deletion of the transcription accessory protein Tex was shown to be highly attenuating, and the tex mutant was capable of providing protective immunity against challenge with wild-type B. pseudomallei, suggesting that the genes identified in our TraDIS screen have the potential to be investigated as live vaccine candidates.


Subject(s)
Bacterial Proteins/metabolism , Burkholderia pseudomallei/growth & development , Burkholderia pseudomallei/metabolism , Melioidosis/microbiology , Virulence Factors/metabolism , Animals , Bacterial Proteins/genetics , Burkholderia pseudomallei/genetics , Female , Humans , Mice , Mice, Inbred BALB C , Microbial Viability , Virulence Factors/genetics
19.
Future Microbiol ; 9(5): 657-68, 2014.
Article in English | MEDLINE | ID: mdl-24957092

ABSTRACT

Mycobacterium tuberculosis, an etiologic agent of tuberculosis, exacts a heavy toll in terms of human morbidity and mortality. Although an ancient disease, new strains are emerging as human population density increases. The emergent virulent strains appear adept at steering the host immune response from a protective Th1 type response towards a Th2 bias, a feature shared with some pathogenic fungi. Other common characteristics include infection site, metabolic features, the composition and display of cell surface molecules, the range of innate immune receptors engaged during infection, and the ability to form granulomas. Literature from these two distinct fields of research are reviewed to propose that the emergent virulent strains of M. tuberculosis are in the process of convergent evolution with pathogenic fungi, and are increasing the prominence of conserved traits from environmental phylogenetic ancestors that facilitate their evasion of host defenses and dissemination.


Subject(s)
Fungi/pathogenicity , Mycobacterium tuberculosis/pathogenicity , Mycoses/pathology , Tuberculosis, Pulmonary/pathology , Cell Wall/chemistry , Fungi/immunology , Granuloma/microbiology , Humans , Mannose/metabolism , Membrane Proteins/chemistry , Mycobacterium tuberculosis/classification , Mycobacterium tuberculosis/immunology , Mycoses/microbiology , Receptors, Pattern Recognition/immunology , Th1 Cells/immunology , Th2 Cells/immunology , Tuberculosis, Pulmonary/microbiology
20.
J Leukoc Biol ; 94(3): 449-58, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23787127

ABSTRACT

TLRs mediate recognition of a wide range of microbial products, including LPS, lipoproteins, flagellin, and bacterial DNA, and signaling through TLRs leads to the production of inflammatory mediators. In addition to TLRs, many other surface receptors have been proposed to participate in innate immunity and microbial recognition, and signaling through some of these, for example, C-type lectins, is likely to cooperate with TLR signaling in defining inflammatory responses. In the present study, we examined the importance of the ECD and intracellular TIR domain of boTLR2 and huTLR2 to induce a species-specific response by creating a chimeric TLR2 protein. Our results indicate that the strength of the response to any TLR2 ligand tested was dependent on the extracellular, solenoid structure, but not the intracellular TIR domain. Furthermore, we examined whether the recognition of two PAMPs by Dectin-1, a CLR, depends on the interaction with TLR2 from the same species. TLR2 expression seemed to affect the Dectin-1-dependent production of CXCL8 to ß-glucan containing zymosan as well as Listeria monocytogenes. Furthermore, the interaction of Dectin-1 with TLR2 seemed to require that both receptors are from the same species. Our data demonstrate that the differences in the TLR2 response seen between the bovine and human system depend on the ECD of TLR2 and that collaborative recognition of distinct microbial components by different classes of innate-immune receptors is crucial in orchestrating inflammatory responses.


Subject(s)
Lectins, C-Type/physiology , Toll-Like Receptor 2/physiology , Animals , Cattle , HEK293 Cells , Humans , Interleukin-8/physiology , Ligands , NF-kappa B/metabolism , Signal Transduction , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...